# Angle Sum Identities of Trigonometric Functions
$\cos (\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$
$\sin (\alpha + \beta)=\sin \alpha \cos \beta +\cos \alpha \sin \beta$
$\tan (\alpha + \beta) = \frac {\tan \alpha + \tan \beta} {1- \tan \alpha \tan \beta}$ ^64yfg7
## Proof for Sine and Cosine
![[Sine and Cosine Angle Addition Identities.svg|350]]
[Sine and Cosine Angle Sum Identity on desmos](https://www.desmos.com/geometry/3yoqysjwh5)
- Start by constructing a triangle $ABC$ with angle $a$ and hypothenuse of length 1
- $|AC| = \cos a$ and $|BC| = \sin a$
- Then construct a second triangle $ACD$ with angle $b$ and hypothenuse of length $AC$
- $|AD| = \cos b \cdot |AC| = \cos b \cos a$ and $|CD| = \sin b \cdot |AC| = \sin b \cos a$
- Now extend $|CD|$ to form a rectangle $ADEF$
- $\angle ACD = 90\degree - b$, and $\angle BCE = 90\degree - \angle ACD = b$
- $|CE| = \cos b \cdot |BC| = \cos b \sin a$ and $|BE| = \sin b \cdot |BC| = \sin b \sin a$
- $\angle ABF = a + b$ because $AD$ and $FE$ are parallel
- $|BF| = \cos (a+b) = \cos b \cos a - \sin b \sin a$
- $|AF| = \sin (a+b) = \sin b \cos a + \cos b \sin a$
## Proof for Tangent
![[Tangent Angle Sum Identity.svg|350]]
[Tangent Angle Sum Identity on desmos](https://www.desmos.com/geometry/vnuamgsvzf)
- Start by constructing a triangle $ABC$ with angle $a$ and adjacent side 1
- By definition $\tan$ is opposite divided by adjacent. Our adjacent side is 1 so $|BC| = \tan a$
- $|AC| = \sqrt {1+\tan^2 a} = \sqrt {\frac {\cos^2 a + \sin^2 a} {\cos ^2 a}} = \frac 1 {\cos a}$
- $\tan b = \frac {|CD|} {|AC|} = \cos a \cdot |CD|$ and therefore $|CD| = \frac {\tan b} {\cos a}$
- $\angle ACB = 90\degree - a$, and $\angle DCE = 90\degree - \angle ACB = a$
- $|CE| = \cos a \cdot |CD| = \cos a \frac {\tan b} {\cos a} = \tan b$
- $|DE| = \sin a \cdot |CD| = \sin a \frac {\tan b} {\cos a} = \tan a \tan b$
- $|DF| = 1 - |DE| = 1 - \tan a \tan b$
- $\angle ADF = a + b$ because $AB$ and $FE$ are parallel
- $\tan(a+b) = \frac {|AF|} {|DF|} = \frac {\tan a + \tan b} {1 - \tan a \tan b}$