# Antiderivatives of Reciprocal Quadratics
$
\begin{align}
\int \frac 1 {x^2 + 1} \, dx &= \bigg ( \text {perform trig substitution } x=\tan \theta \bigg) \\
&=\int \frac 1 {\sec^2 \theta} \sec^2 \theta \, d\theta \\
&=\int 1 \, d\theta \\
&=\theta + C \\
&= \arctan(x) +C
\end{align}
$
$\int \frac 1 {x^2+1} \,dx = \arctan(x) + C$
---
$
\begin{align}
\int \frac 1 {x^2 + a^2} \, dx &= \bigg(\text {substitute } x=au, \frac {dx}{du} = a \bigg) \\
&= \int \frac 1 {a^2u^2+a^2} a\,du \\
&= \frac 1 a \int \frac 1 {u^2 + 1} \, du \\
&=\frac 1 a \arctan(u) + C \\
&= \frac 1 a \arctan \left(\frac x a \right) + C
\end{align}
$
$\int \frac 1 {x^2+a^2} \,dx = \frac 1 a \arctan \left(\frac x a \right) + C$ ^33xemi
---
$
\begin{align}
\int \frac 1 {(x \pm a)^2 + b^2} \, dx &= \bigg( \text {substitute } u=x\pm a, \frac {du}{dx} =1 \bigg) \\
&= \int \frac 1 {u^2 + b^2} \, du \\
&= \frac 1 b \arctan \left( \frac {x \pm a} b \right) + C
\end{align}
$
$\int \frac 1 {(x \pm a)^2 + b^2} \, dx = \frac 1 b \arctan \left( \frac {x \pm a} b \right) + C$ ^vkb1ui
---
$\int \frac 1 {x^2 - a^2} \, dx = \int \frac A {x-a}\,dx - \int \frac B {x+a} \, dx$
$
\begin{gather}
A(x+a) - B(x-a) = 1 \\
Ax-Bx +Aa+Ba = 1 \\
(A-B)x + (A+B)a = 1\\
\end{gather}
$
$
\begin{gather}
A-B = 0 & (A+B)a = 1\\
A = B & 2A= \frac 1 a
\end{gather}
$
$A=B=\frac 1 {2a}$
$
\begin{align}
\int \frac 1 {x^2 - a^2} \, dx &= \int \frac A {x-a}\,dx - \int \frac B {x+a} \, dx\\
&= \frac 1 {2a}\int \frac 1 {x-a} \, dx - \frac 1 {2a}\int \frac 1 {x+a} \, dx \\
&=\frac 1 {2a} \ln|x-a|-\frac 1 {2a}\ln|x+a| + C \\
&=\frac 1 {2a}\ln \left|\frac {x-a} {x+a}\right| + C
\end{align}
$
$\int \frac 1 {x^2 - a^2} \, dx =\frac 1 {2a}\ln \left|\frac {x-a} {x+a}\right| + C$
^6w7yvr
---
$
\begin{align}
\int \frac 1 {(x \pm a)^2 - b^2} \, dx &= \bigg( \text {substitute } u=x\pm a, \frac {du}{dx} =1 \bigg) \\
&= \int \frac 1 {u^2 - b^2} \, du \\
&= \frac 1 {2b}\ln \left|\frac {u-b} {u+b}\right| + C
\end{align}
$
$\int \frac 1 {(x \pm a)^2 - b^2} \, dx = \frac 1 {2b}\ln \left|\frac {x \pm a -b} {x \pm a+b}\right| + C$ ^w2nryz
---
$
\begin{align}
\int \frac 1 {(x\pm a)^2} \, dx &= \bigg( \text {substitute } u=x \pm a, \frac {du}{dx} =1 \bigg) \\
&= \int u^{-2} \, du \\
&= -u^{-1} + C \\
&=- \frac 1 {x \pm a} + C
\end{align}
$
$\int \frac 1 {(x\pm a)^2} \, dx =- \frac 1 {x \pm a} + C$ ^u28w30
## Sources
- [Integrating the reciprocal of a quadratic](https://www.youtube.com/watch?v=f-dzLF98cys)