# Exponent Rules
For logarithm rules see [[Logarithm Rules]]. For square roots, see [[Square Root]].
Basic properties:
$
\begin{gathered}
x^ax^b = x^{a+b} \\
x^0 = 1
\end{gathered}
$
Derived properties (see [[#Deriving Exponent Properties From Basic Properties]] for proof):
$
\begin{gathered}
\left(x^a\right)^b = x^{ab} \\
x^{\frac 1 a} = \root a \of x \\
x^{-a} = \frac{1}{x^a}
\end{gathered}
$
## Exponent Change of Base Formula
![[Logarithm Rules#^hmy4h0]]
So we can can say that
$j^k = c^{\log_c{(j^k)}} = c^{\log_c(j)k}$ ^k5kjan
## Rules that are sometimes true
$
\begin{gathered}
x^a y^a = (xy)^a \\
\sqrt x \sqrt y = \sqrt {xy}
\end{gathered}
$
True when at least one of $x$, $y$ are positive, or when exponent $a$ is an integer. See [[Misconception About Multiplying Square Roots]].
$
\sqrt \frac{x}{y} = \frac{\sqrt x}{\sqrt y}
$
The above is true when $y$ is positive, or when both $x$ and $y$ are negative. See [[Misconception About Roots and Fractions]].
## Deriving Exponent Properties From Basic Properties
$
\left(x^a\right)^b = \prod_{i=1}^b x^a = x^{\sum_{i=1}^b a} = x^{ab}
$
$
\begin {gathered}
\left(x^{\frac 1 a}\right)^a = \prod_{i=1}^a x^{\frac 1 a} = x^{\sum_{i=1}^a \frac 1 a} = x^1 = x \\
\left(x^{\frac 1 a}\right)^a = x \\
x^{\frac 1 a} = \root a \of x
\end{gathered}
$
$
\begin{gathered}
x^{-a} x^{a} = x^{-a+a} = x^0 = 1 \\
x^{-a} x^{a} = 1 \\
x^{-a} = \frac{1}{x^a}
\end{gathered}
$