# Fibonacci Sequence
The Fibonnaci Sequence is a number sequence in which the $n$-th term is defined as a sum of the previous two terms.
$
F_n =
\begin{cases}
n=1:& 1 \\
n=2:& 1 \\
n>2:& F_{n-1} + F_{n-2}
\end{cases}
$
Any term in the Fibonnaci Sequence can be calculated using Binet's Formula:
$
F_n=\frac{\left(\frac{1+\sqrt 5}{2} \right)^n-\left(\frac{1-\sqrt 5}{2} \right)^n}{\sqrt 5}
$
The ratio of two consecutive terms approaches [[The Golden Ratio]] as $n \rightarrow \infty$.
$
\lim_{n \rightarrow \infty} \left( \frac{F_{n+1}}{F_n} \right) = \frac{1+\sqrt 5}{2} = \varphi
$