# Geometric Definitions of Derived Trigonometric Functions
![[Cotangent.png|300]]
We're looking at right triangle $ABC$ whose right angle is at C and its $\theta$ angle at $A$. Per definition, segments $|AC|$ and $|BC|$ correspond to $h \cos \theta$ and $h \sin \theta$, but what isn't immediately obvious is graphing of $\tan \theta$, $\cot \theta$, $\sec \theta$, and $\csc \theta$.
To derive those we look at right triangles $BCD$, $ABD$, and $ADE$, all which are similar because they all contain an angle $\theta$.
$\angle CBD$ is equal to $\theta$ because $\angle ABD$ is a right angle (per setup), and $\angle ABC = 90\degree - \theta$ : $\angle CBD = 90 \degree - (90 \degree - \theta)$.
## $|BD| = h \tan \theta$
Because two similar triangles have the same ratio of sides we can say that $\frac o a= \frac {|CD|} o$ and $\frac o a = \frac {|BD|} h$. Let's simplify those two statements to derive $|BD|$.
$
\begin{align}
\frac {|CD|} o &= \frac o a && \text{multiply both sides by $o$} \\
|CD| &= \frac {o^2} a
\end{align}
$
$
\begin{align}
\frac {|BD|} h &= \frac o a = \frac {|CD|} o \\
\frac {|BD|} h &= \frac {|CD|} o && \text{multiply both sides by $h$} \\
|BD| &= \frac {|CD| \cdot h} o && \text {substitute $x$} \\
&= \frac {\frac {o^2} a h} o \\
&= \frac {o^2h} {ao} = \frac o a h \\
|BD| &= h \tan \theta
\end{align}
$
## $|BE| = h \cot \theta$
Because two similar triangles have the same ratio of sides we can say that $\frac a o = \frac {|BE|} h$, and so:
$
\begin {align}
\frac {|BE|} h &= \frac a o &&\text{multiply both sides by $h$} \\
|BE| &= h\frac a o \\
|BE| &= h \cot \theta
\end {align}
$
## $|AD| = h \sec \theta$
$
\begin {align}
|AD| &= a + |CD| \\
&= a + \frac {o^2} a \\
&= \frac {a^2 + o^2} {a} \\
&= \frac {h^2} {a} = \frac h a h \\
|AD| &= h \sec \theta
\end {align}
$
## $|AE| = h \csc \theta$
Because two similar triangles have the same ratio of sides we can say that $\frac o a = \frac {|AD|} {|AE|}$, and $|AD| = h \sec \theta$ (from above), so:
$
\begin{align}
\frac o a &= \frac {h \sec \theta} {|AE|} && \text{multiply both sides by $|AE|$} \\
\frac{o \cdot |AE|}a &= h \sec \theta && \text{multiply both sides by $\frac a o$} \\
|AE| &= h \frac {a} {o}\sec \theta \\
&= h \frac {a} {o} \frac h a \\
|AE| &= h \csc \theta
\end{align}
$