# Logarithm Rules
Logarithm is the [[Inverse (in Algebra)|inverse]] of exponentiation. For exponentiation rules see [[Exponent Rules]]. For the logarithmic scale see [[Logarithmic Scale]].
By definition, for every $b \ne 1$:
$b^{\log_b a} = a$ ^hmy4h0
$
\begin{align}
\log_x1 &= 0 \\ \\
\log(ab) &= \log a + \log b \\ \\
\log\left(\frac a b \right) &= \log a - \log b \\ \\
\log(a^n) &= n \cdot \log a \\ \\
\log_ba &= \frac{1}{\log_ab}\\ \\
\log_b a &= \frac{\log_c a}{\log_c b} \\ \\
\log_c b \cdot \log_b a &= \log_c a
\end{align}
$
The last rule can be derived from the change of base formula:
$
\begin{align}
\log_c b \cdot \log_b a &= \log_c b \cdot \frac{\log_c a}{\log_c b} & \text {change the base of the second term} \\
&=\log_c a
\end{align}
$
## Deriving The Change of Base Formula
$
\begin {align}
\log_b a &= y \\
b^y &= a \\
\log_c b^y &= log_c a \\
y \log_c b &= log_c a \\
y &= \frac {log_c a}{\log_c b}
\end {align}
$
## Logarithm Derivative
$\frac d {dx} \bigg[\log_b x\bigg] = \frac 1 {x \ln b}$
$\frac d {dx} \bigg[\ln x\bigg] = \frac 1 x$^kl76b8
### Proof
![[Logarithm Rules#^hmy4h0]]
If we take the derivative of both sides and apply [[The Derivative Chain Rule]] we get:
$
\begin{gather}
\frac d {dx}\bigg [ b^{\log_b x} \bigg] = 1 \\
b^{\log_b x} \ln b \cdot \frac d {dx} \bigg[\log_bx\bigg] = 1 &\text{see note 1} \\
\frac d {dx} \bigg[\log_bx\bigg] = \frac 1 {x\ln b}
\end{gather}
$
Note 1: see [[Exponential Functions#Exponential Function Derivative]]
![[Exponential Functions#^x4xm54]]
## Logarithm Antiderivative
$\int \ln (nx) \, dx = x(\ln (nx) - 1) + C$ ^scpwa7
### Proof
For $\int \ln (x) \,dx$, apply [[Integration by Parts]] with $u = \ln x$
$\int \ln x \, dx = (\ln(x)) (x) - \int \left(\frac 1 x\right) (x) \, dx = x(\ln(x) - 1) + C$
$
\begin {align}
\int \ln(nx) \, dx &= \int \ln x \, dx + \int \ln n \, dx \\
&= x\ln x - x + x\ln n + C \\
&= x(\ln x + \ln n -1) + C \\
&= x(\ln (nx) - 1) + C
\end {align}$