# Polar Coordinates
Several methods can be used to describe the location of a point on a plane, the most common being the Cartesian coordinate system. However, in some cases the polar coordinate system is much better suited to the task. **The polar coordinate system maps a point's distance from the origin of the coordinate system** (which corresponds to the magnitude of a complex number on the complex plane), **to the angle of the point's vector with the $x$ axis** (which corresponds to the argument of a complex number on the complex plane).
Cartesian coordinates: $(x, y)$
Polar coordinates: $(r, \theta)$
The polar coordinates can be used to simplify descriptions of circular graphs.
For example all of the below describe a [[circle]] with radius of 1:
- $x^2+y^2 = 1$
- $y = \sqrt{1-x^2} \quad \cup \quad y = -\sqrt{1-x^2}$
- $r=1$
A circle with radius of 2:
- $x^2+y^2 = 4$
- $y = \sqrt{4-x^2} \quad \cup \quad y = -\sqrt{4-x^2}$
- $r=2$
## Converting Between Coordinates
$x=r\cos\theta \quad y=r\sin\theta$
$
r=\sqrt{x^2+y^2} \quad \theta =
\begin{cases}
x\ne 0 & \arctan \left(\frac y x \right)\\
x=0 \land y\ge 0 & \frac \pi 2 \\
x=0 \land y < 0 & -\frac \pi 2
\end{cases}
$