# Sum of Cubes of First N Integers
$\sum_{n=1}^b n^3 = \left(\frac{b(b+1)}{2}\right)^2=\left(\sum_{n=1}^b n\right)^2$ ^x3uvpu
## Proof by Binomial Expansion
Start with binomial expansion of $(n-1)^4$ [^1]:
$
\begin{gather}
(n-1)^4=n^4-4n^3+6n^2-4n+1 \\
n^4 - (n-1)^4=4n^3-6n^2+4n-1
\end{gather}
$
[^1]: Per [[Binomial Theorem]]
We can take the sum of both sides from $n=1$ to $b$ to get:
$\sum_{n=1}^b\left[n^4 - (n-1)^4\right] = \sum_{n=1}^b\left[4n^3-6n^2+4n-1\right]$
Lets look at the two sides one by one. The left sum can be expanded like:
$
\begin{gather}
\sum_{n=1}^b\left[n^4 - (n-1)^4\right] = \\
1 + \\
2^4-1+ \\
3^4-2^4+ \\
4^4 - 3^4 \\
+\ldots+ \\
b^4-(b-1)^4 \\
=b^4
\end{gather}
$
It is said that this series telescopes: all terms cancel out until the last $b^4$.
The right sum can be simplified as:
$\sum_{n=1}^b\left[4n^3-6n^2+4n-1\right] = 4 \sum_{n=1}^b \left[n^3\right] - 6 \sum_{n=1}^b\left[n^2\right] + 4\sum_{n=1}^b [n] - b$
When we put the left and right sides together we get:
$
\begin{gather}
b^4 = 4 \sum_{n=1}^b \left[n^3\right] - 6 \sum_{n=1}^b\left[n^2\right] + 4\sum_{n=1}^b [n] - b \\
4 \sum_{n=1}^b \left[n^3\right] = b^4 + 6 \sum_{n=1}^b\left[n^2\right] - 4\sum_{n=1}^b [n] + b
\end{gather}
$
[[The Gauss Trick]] tells us the value of $\sum_{n=1}^b n$, and [[Sum of Squares of First N Integers]] tells us the value of $\sum_{n=1}^b[n^2]$, so we can simplify:
$
\begin{align}
4 \sum_{n=1}^b \left[n^3\right] &= b^4 + 6 \sum_{n=1}^b\left[n^2\right] - 4\sum_{n=1}^b [n] + b \\
&= b^4 + 6 \frac {b(b+1)(2b+1)} {6} - 4\frac {b(b+1)} {2} + b \\
&= b^4 + b(b+1)(2b+1) - 2b(b+1) + b \\
&= b\left( b^3 + 2b^2+b+2b+1-2b-2+1\right) \\
&=b\left( b^3+2b^2+b \right) \\
&=b^2\left(b^2+2b+1 \right) \\
4 \sum_{n=1}^b \left[n^3\right] &= b^2(b+1)^2 \\
\sum_{n=1}^b \left[n^3\right] &= \frac {b^2(b+1)^2} {4} = \left( \frac {b(b+1)} {2} \right)^2
\end{align}
$