# Sum of Squares of First N Integers $\sum_{n=1}^b n^2 = \frac{b(b+1)(2b+1)}{6}$ ^z1v20k ## Proof by Binomial Expansion Start with binomial expansion of $(n-1)^3$ [^1]: $ \begin{gather} (n-1)^3=n^3-3n^2+3n-1 \\ n^3-(n-1)^3 = 3n^2 -3n + 1 \end{gather} $ [^1]: Per [[Binomial Theorem]] We can take the sum of both sides from $n=1$ to $b$ to get: $\sum_{n=1}^b\left[n^3-(n-1)^3\right] = \sum_{n=1}^b\left[3n^2 -3n + 1\right]$ Lets look at the two sides one by one. The left sum can be expanded like: $ \begin{gather} \sum_{n=1}^b\left[n^3-(n-1)^3\right] = \\ 1 + \\ 2^3-1+ \\ 3^3-2^3+ \\ 4^3 - 3^3 \\ +\ldots+ \\ b^3-(b-1)^3 \\ =b^3 \end{gather} $ It is said that this series telescopes: all terms cancel out until the last $b^3$. The right sum can be simplified as: $\sum_{n=1}^b\left[3n^2 -3n + 1\right] = 3 \sum_{n=1}^b \left[n^2\right] - 3 \sum_{n=1}^b[n] + b$ When we put the left and right sides together we get: $ \begin{gather} b^3 = 3 \sum_{n=1}^b \left[n^2\right] - 3 \sum_{n=1}^b[n] + b \\ 3 \sum_{n=1}^b \left[n^2\right] = b^3 + 3 \sum_{n=1}^b[n] - b \end{gather} $ [[The Gauss Trick]] tells us the value of $\sum_{n=1}^b n$, so we can simplify $ \begin{align} 3 \sum_{n=1}^b \left[n^2\right] &= b^3 + 3 \sum_{n=1}^b[n] - b \\ 3 \sum_{n=1}^b \left[n^2\right] &= b^3 + 3 \frac{b(b+1)}{2} - b \\ \sum_{n=1}^b \left[n^2\right] &= \frac 1 3 b^3 + \frac{b(b+1)}{2} - \frac 1 3 b \\ &=\frac 1 6[ 2b^3 + 3b(b+1) - 2b] \\ &= \frac 1 6b [2b^2 + 3b+1] \\ &= \frac 1 6 b (2b+1)(b+1)\end{align} $