# The Derivative Sum Rule The derivative of the sum of two functions equals the sum of their derivatives. $\frac d {dx} \bigg[f(x) + g(x)\bigg] = f'(x) + g'(x)$ ^ke50ua ## Proof As per the definition of the [[Derivative]]: ![[Derivative#^zzz13y]] so $ \begin{align} \frac d {dx} \bigg[(f+g)(x)\bigg] &= \lim_{x \to a} \frac {(f+g)(x) - (f+g)(a)}{x-a}\\ &= \lim_{x \to a} \frac {f(x) + g(x) - (f(a) + g(a))}{x-a} \\ &= \lim_{x \to a} \frac {f(x) - f(a)}{x-a} + \lim_{x \to a} \frac {g(x) - g(a)}{x-a} \\ &= \frac d {dx} [f(x)] + \frac d {dx}[g(x)] \end{align} $