# The Limit Constant Rule
$
\lim_{x \to a} {[c f(x)]} = c \lim_{x \to a} f(x)
$
^2uw6gl
## Proof
Given $\lim_{x \to a} f(x) = L$, by definition, for any $\epsilon$, there exists a range of $x$ values such that $|f(x) -L| \lt \epsilon$.
$
\begin{gather}
|f(x) -L| < \epsilon & \text{multiply both sides by $|c|$ where $c \ne 0$} \\
|c||f(x) -L | < |c| \epsilon \\
|cf(x)- cL| < |c|\epsilon & \text{pick $\epsilon = \frac {\epsilon’} {|c|}$} \\
|cf(x)- cL| < \epsilon’ & \text{reversing limit definition we can therefore state that} \\
\lim_{x\to a} [cf(x)] = cL \\
\lim_{x\to a} [cf(x)] = c \lim_{x \to a} f(x)
\end{gather}
$
One edge case remains, when $c = 0$.
When $c = 0$ then $\lim_{x \to a} [c f(x)] = \lim_{x \to a} 0$, and also $c \lim_{x \to a} f(x) = 0 \cdot \lim_{x \to a} f(x) = 0$, so the rule stands for all $c$-s.