# The Limit Polynomial Rule
$
\lim_{x \to a} p(x) = p(x)
$
^2f957s
## Proof
We can write any polynomial as
$
p(x) = \sum_{k=0}^n c_kx^k
$
By combining the constant, sum and power rules proved above we get:
$
\begin{align}
\lim_{x \to a} p(x) &= \lim_{x \to a} \left[ \sum_{k=0}^n c_kx^k \right] \\
&= \sum_{k=0}^n \lim_{x \to a} \left[ c_kx^k \right] \\
&= \sum_{k=0}^n c_k \lim_{x \to a} x^k \\
&= \sum_{k=0}^n c_k a^k \\
&= p(a)
\end{align}
$