# The Limit Power Rule
$
\lim_{x \to a} x^n = a^n
$
^f2joqi
## Proof
We’re trying to evaluate $\lim_{x \to a} x^n = L$ which exists if given any $\epsilon$ we can come up with a range of $x$ values such that the following inequality is satisfied $|x^n - L| < \epsilon$.
Recall the [[Binomial Theorem]]:
$
(x+y)^n = \sum_{k=0}^n \binom n k x^{n-k}y^k
$
We start by looking at $x^n$ and applying the binomial theorem to it:
$
\begin{align}
x^n &= (a + (x-a))^n \\
x^n &= \sum_{k=0}^n \binom n k a^{n-k}(x-a)^k && \text{peal off first element} \\
x^n &= a^n + \sum_{k=1}^n \binom n k a^{n-k}(x-a)^k && \text{subtract and apply absolute value} \\
|x^n - a^n| &= \left|\sum_{k=1}^n \binom n k a^{n-k}(x-a)^k \right|
\end{align}
$
Next apply the [[Absolute Value#The Triangle Inequality|triangle inequality]] $n$ times to get:
$
\begin{align}
|x^n - a^n| &= \left|\sum_{k=1}^n \binom n k a^{n-k}(x-a)^k \right| \\
|x^n - a^n| &\le \sum_{k=1}^n \binom n k |a^{n-k}| \cdot |x-a|^k \\
|x^n - a^n| &\le \sum_{k=1}^n \binom n k |a|^{n-k} \cdot |x-a|^k
\end{align}
$
Now recall that per the definition of the limit, $\lim_{x \to a}x^n = a^n$ holds true if for any given $\epsilon > 0$, we can come up with a positive value $\delta$ such that for all $x$ values within the range $a - \delta < x < a + \delta$ the following holds: $|x^n - a^n| < \epsilon$.
Our range will be $a-\delta < x < a + \delta$ or $|x-a| < \delta$ so we can say that
$
|x^n - a^n| < \sum_{k=1}^n \binom n k |a|^{n-k} \cdot \delta^k
$
We can now apply the [[Binomial Theorem]] again to simplify the right side of the above.
We start by taking $x^n = a^n + \sum_{k=1}^n \binom n k a^{n-k}(x-a)^k$ from above, and substituting $x$ and $a$ like such: $x = \delta + |a|$, and $a = |a|$.
$
\begin{gather}
(\delta + |a|)^n = |a|^n + \sum_{k=1}^n \binom n k |a|^{n-k}(\delta+|a|-|a|)^k \\
(\delta + |a|)^n - |a|^n = \sum_{k=1}^n \binom n k |a|^{n-k}\delta^k \\
\end{gather}
$
Therefore $|x^n - a^n| < \sum_{k=1}^n \binom n k |a|^{n-k} \cdot \delta^k$ can be simplified to:
$
|x^n - a^n| < (\delta + |a|)^n - |a|^n
$
This gives us a way to calculate $\delta$ from $\epsilon$, proving that in fact $\lim_{x \to a}x^n = a^n$.
$
\begin{gather}
(\delta + |a|)^n - |a|^n = \epsilon \\
(\delta + |a|)^n = \epsilon + |a|^n \\
\delta + |a| = \sqrt[n] {\epsilon + |a|^n} \\
\delta = \sqrt[n] {\epsilon + |a|^n} - |a|
\end{gather}
$