# Vieta's Formulas
Is a formula that relates a [[Polynomials|polynomial's]] coefficients to the sum and product of its roots.
Consider any polynomial of degree $n$ with roots $r_1..r_n$ of form
$
f(x) = a_nx^n + a_{n-1}x^{n-1} + \ldots + a_1x + a_0
$
Then the sum of its roots is:
$
\sum_{i=1}^n r_i = -\frac{a_{n-1}}{a_n}
$
And the sum of its roots is:
$
\prod_{i=1}^n r_i = (-1)^n\frac{a_0}{a_n}
$
## For [[Quadratics]]
$x_1 + x_2 = -\frac{b}{a} \qquad x_1x_2 = \frac{c}{a}$
### Simple proof of Vieta's Formula for [[Quadratics]]
Recall that the standard form of a quadratic is $y = ax^2 + bx + c$ and the factored form is $y= a(x-x_1)(x-x_2)$.
$
\begin{align}
y &= a(x-x_1)(x-x_2) \\
y &= a(x^2-x_1x-x_2x+x_1x_2) \\
y &= a(x^2 - (x_1+x_2)x + x_1x_2) \\
y &= ax^2 - a(x_1+x_2)x + ax_1x_2
\end{align}
$
From there
$
\begin{align}
b &= -a(x_1+x_2) & c &= ax_1x_2 \\
x_1 + x_2 &= -\frac{b}{a} & x_1x_2 &= \frac{c}{a}
\end{align}
$
### Use for solving monic quadratics
Given [[Polynomials#Monic Polynomial|monic]] quadratic $x^2+bx+c=0$, find two numbers $j$ and $k$ such that $kj=c$ and $k+j=b$. The two numbers are the quadratic's roots multiplied by -1.
$
x^2+bx+c=(x+j)(x+k)
$